
Trillion Rows
per day
powered by
Delta Lake At
Adobe
Yeshwanth Vijayakumar

Director Of Engineering @ Adobe
1

©2024 Databricks Inc. — All rights reserved

Building over earlier talks in 2022,2023 and sharing new patterns

2

Agenda

• About The data?

• Scaling the Writer

• Data representation and nested
schema evolution

• Strings FTW - data
manipulation using UDFs

• Transaction Management and
tracking Delta Using Delta

• 2 phase commits
• Append-Only DeltaTables

to track global history
across thousands of
tables

• Maintenance Operations and Their
Scaling Gotchas

2

Agenda
Building over earlier talks in 2022,2023 and sharing
new patterns

 About The data?
 Scaling the Writer

▪ Thousand Stream problem-managing thousands of Structured
Streaming writers at scale

▪ JVM agnostic locking for partition level concurrency control
▪ Balancing Multi Tenancy and Single Tenancy

 Transaction Management and tracking Delta Using
Delta

▪ 2 phase commits
▪ Append-Only DeltaTables to track global history across thousands

of tables

 Data representation and nested schema evolution
▪ Strings FTW - data manipulation using UDFs

 Maintenance Operations and Their Scaling
Gotchas

Unified Profile Data Ingestion

Unified Profile
Experience Data Model

Adobe Campaign

AEM

Adobe Analytics

Adobe
AdCloud

Change Feed Streaming
Stats Generation

Single Tenant Multi Tenant

Linking Identities

Complexities?
• Nested Fields

• a.b.c.d[*].e nested hairiness!
• Arrays!
• MapType

• Every Tenant has a different Schema!

• Schema evolves constantly
• Fields can get deleted, updated.

• Multiple Sources
• Streaming
• Batch

e2e-seg-2-20-20-02

Scale?

• 1-2 Trillion Rows of changes a day
• Tenants have 10+ Billions of rows
• PBs of data
• Million RPS peak across the system
• Triggers multiple downstream applications

• Segmentation
• Activation

CDC (existing)

Batch Ingestion / Streaming
Ingestion /

API based Ingest

Mutation Apps
Hot Store

CDC

1. Send Request to
Cosmos

2.Ack

3.Emit CDC

Consumed by
• Stats
• Edge
• etc

Dataflow with DeltaLake
primary

Id relatedId field
1 field2 field1000

103 103,789,101 q w r

789 103,789,101 x y z

101 103,789,101 x y z Cosmos
DB

primaryId relatedId field1 field1000

103 103,789,101 q r

primaryId relatedId jsonString
103 103,789,101 <jsonStr>

789 103,789,101 <jsonStr>

101 103,789,101 <jsonStr>

Staging Table
Change Feed CDC

Raw Table (per tenant)

Check for Work every
X minutes

UPSERT/DELETE into
Raw Table

Fetch
Records

to process

APPEND only!

CDC
Dumper

Backfill

Long Running
Streaming
Application

Processor

Partitioned by tenant and 15 min time intervals

TenantLock in Redis

Stage
Log -

CosmosD
B

Staging Tables FTW
Fan-In pattern vs Fan-out

• Multiple Source Writers Issue Solved
• By centralizing all reads from CDC, since ALL writes generate a CDC

• Staging Table in APPEND ONLY mode
• No conflicts while writing to it

• Filter out. Bad data > thresholds before making it to
Raw Table

• Batch Writes by reading larger blocks of data from
Staging Table
• Since it acts time aware message buffer

Staging Table Logical
View

ProgressMap

2 Phase Commit Protocol

 Write to Stage Table and
Stage Log is governed
by a 2 phase commit
 It is also idempotent

using
▪ Custom Stage Log Flags on a

High Consistency Mode
▪ Additionally use

▪ .option("txnVersion",
batch_id).option("txnAppId", app_id)

TODO: Image

Why choose JSON String format?
 We are doing a lazy Schema on-read approach.

▪ Yes. this is an anti-pattern.

 Nested Schema Evolution was not supported on update in delta in 2020
▪ Supported with latest version

 We want to apply conflict resolution before upsert-ing
▪ Eg. resolveAndMerge(newData, oldData)
▪ UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per

org in Multi tenant fashion
▪ Now we just have simple JSON merge udfs

▪ We use json-iter which is very efficient in loading partial bits of json and in manipulating them.

 Don’t you lose predicate pushdown?
▪ We have pulled out all main push-down filters to individual columns

▪ Eg. timestamp, recordType, id, etc.
▪ Profile workloads are mainly scan based since we can run 1000’s of queries at a single time.
▪ Reading the whole JSON string from datalake is much faster and cheaper than reading from

Cosmos for 20% of all fields.

Schema On Read is more
future safe approach for
raw data
 Wrangling Spark Structs is not

user friendly
 JSON schema is messy

▪ Crazy nesting
▪ Add maps to the equation, just the

schema will be in MBs

 Schema on Read using Json-
iter means we can read what
we need on a row by row basis

 Materialized Views WILL have
structs!

Partition Scheme of Raw records

• RawRecords Delta Table
• recordType

• sourceId
• timestamp (key-value records will use DEFAULT value)

z-order on primaryId

z-order - Colocate column information in the same set of files using locality-preserving space-filling curves

https://en.wikipedia.org/wiki/Space-filling_curve

Scaling the Writer

- JVM agnostic locking for partition level
concurrency control

Hive Style Partitions

root

recordType1

source1 source2

recordType2

source3

• Highly concurrent
operations

• Inserts and Updates
on single partitions

• Deletes across
partitions

Leads to

Conflicts!

JVM Free Locking to rescue
root

recordType1

source1 source2

recordType2

source3

Writer
Writer

Writer

Writer

check-obtain-lock

check-obtain-lock

check-obtain-lock

check-obtain-lock

	Trillion Rows per day powered by Delta Lake At Adobe
	Agenda
	Agenda
	Unified Profile Data Ingestion
	Linking Identities
	Complexities?
	Scale?
	CDC (existing)
	Dataflow with DeltaLake
	Staging Tables FTW
	Staging Table Logical View
	2 Phase Commit Protocol
	Why choose JSON String format?
	Schema On Read is more future safe approach for raw data
	Slide Number 15
	Partition Scheme of Raw records
	Scaling the Writer ��- JVM agnostic locking for partition level concurrency control�
	Hive Style Partitions
	Conflicts!
	JVM Free Locking to rescue

